Cause of death by fibrosis stage in 959 patients with biopsy-proven NAFLD

We have read with interest the study from Simon et al, where the authors observed a higher mortality rate among patients with biopsy-proven nonalcoholic fatty liver disease (NAFLD) compared with reference controls without NAFLD.1 Importantly, mortality rates exhibited a significant increase as the severity of NAFLD worsened, that is, from simple steatosis, non-fibrotic nonalcoholic steatohepatitis (NASH), noncirrhotic fibrosis (ie, F1-F3, with or without NASH) to cirrhosis. The leading causes of death were attributable to extrahepatic cancers and liver cirrhosis, while cardiovascular disease and hepatocellular carcinoma had a comparatively lesser impact. This extensive study of patients with NAFLD reveals higher mortality rates across different NAFLD stages but does not stratify causes of death within the respective pre-cirrhotic fibrosis stages (F0-F3). Owing to the long natural history of NAFLD, for example, patients with F0 and F1 may never experience liver-related events.²⁻⁴ For that reason, to assess the distribution of causes of death based on fibrosis stage, we retrospectively leveraged the granular data from a cohort of 959 patients with biopsy-proven NAFLD.

The patients aged ≥18 years were enrolled from three university hospitals in Sweden between 1974 and 2020 (methods detailed in online supplemental appendix 1).⁵ The median age at biopsy was 51 years (IQR 39–60). There were 222 (23.2%) patients with fibrosis stage 0, 372 (38.9%) with F1,

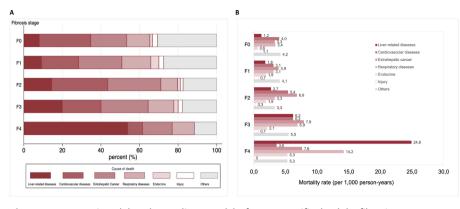


Figure 1 Proportions (A) and mortality rates (B) of cause-specific death by fibrosis stage.

210 (21.9%) with F2, 100 (10.4%) with F3 and 55 (5.7%) with F4 (cirrhosis). Of all patients, 542 patients had NASH (table 1). While the median age at biopsy aligned closely, this cohort exhibited a lower proportion of women (38% vs 45%) compared with the study by Simon et al. In addition, this study showed a higher prevalence of diabetes (25% vs 11%), hypertension (69% vs 10%), hyperlipidemia (18% vs 7%) and obesity (40% vs 4%), reflecting the higher sensitivity to detect such comorbidities in this medical chart-based cohort compared with use of administrative coding. The proportion of cirrhosis was however consistent at approximately 5.7% in both cohorts.

During a median follow-up of 17.9 years, 335 (34.9%) out of 959 patients died, at a mean age of 74.6 years. All-cause mortality increased as the fibrosis stage worsened: 75 (33.8%) patients with F0, 120 (32.4%) with F1, 69 (32.7%) with F2, 45 (45%) with F3 and 26 (47.3%) with F4 died (p for trend=0.019). Liver-related

mortality was the leading cause of death for patients with F4 (53.9%), followed by extrahepatic cancer (15.4%) (figure 1). In non-cirrhotic patients with NAFLD (F0-F3), liver-related mortality increased with the severity of fibrosis stage (8.0% in F0, 10.8% in F1, 14.5% in F2, 20.0% in F3, adjusted HR (aHR)=1. 90 (95% CI 1.32 to 2.73), $p_{trend} = 0.001$). The aHR for liver-related mortality in patients with F1, F2 and F3 was 1.51 (0.56-4.02), 2.80 (1.00-8.00) and 6.62 (2.16-20.3), respectively, compared with those with F0 after adjusting for age, sex and metabolic risk factors However, among patients with F0-F2, death attributable to cardiovascular diseases and extrahepatic cancers were considerably more common than death from liver-related causes. For patients with F3, causes of death were similarly distributed between liver-related disease (20%), cardiovascular disease (20%) and extrahepatic cancer (24%).

To summarise, among individuals with biopsy-proven NAFLD and cirrhosis, liver disease was the most common cause of mortality. Conversely, in patients with non-cirrhotic fibrosis, death from cardio-vascular diseases and extrahepatic cancers surpassed liver-related diseases as the main causes of death, which was in contrast to the results from Simon *et al* where they found the contributions of cardiovascular disease were modest in patients with NAFLD. These results highlight that different management strategies and goals should be re-evaluated and prioritised in patient counselling to improve prognosis.

Ying Shang ¹, Camilla Akbari, ² Maja Dodd, ² Patrik Nasr ¹, ³ Johan Vessby, ⁴ Fredrik Rorsman, ⁴ Stergios Kechagias, ³ Per Stål, ^{1,5} Mattias Ekstedt, ³ Hannes Hagström ^{1,5}

¹Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden ²Department of Medicine, Karolinska Institutet,

Stockholm, Sweden

 Table 1
 Baseline characteristics of patients with biopsy-proven NAFLD (n=959)

Baseline parameters	N (%)/median (IQR)
Age at biopsy (years)	51 (39–60)
Sex (female)	367 (38.3)
Follow-up time (years)	17.2 (7.5–28.0)
F0	222 (23.2)
F1	372 (38.9)
F2	210 (21.9)
F3	100 (10.4)
F4	55 (5.7)
NASH*	542 (31.7)
Cardiovascular disease	67 (7.0)
Type 2 diabetes	240 (25.0)
Hypertension	665 (69.3)
Hyperlipidemia	171 (17.8)
Extrahepatic cancer	77 (8.0)
Body mass index (kg/m²)	28.9 (26.2–32.1)

*Data on NASH status is available in 846 patients.

NAFLD, nonalcoholic fatty liver disease; NASH, nonalcoholic steatohepatitis.

Letter

³Department of Gastroenterology and Hepatology and Department of Health, Medicine, and Caring Sciences, Linköping University, Linköping, Sweden ⁴Department of Gastroenterology and Hepatology, Uppsala University Hospital, Uppsala, Sweden ⁵Division of Hepatology, Department of Upper GI, Karolinska University Hospital, Stockholm, Sweden

Correspondence to Dr Ying Shang; ying.shang@ki.se

X Ying Shang @YingShang1 and Hannes Hagström @ hanneshagstrom

Contributors Study concept and design: YS and HH. Acquisition of data: CA, MD, PN, JV, FR, SK, PS, ME and HH. Statistical analysis and drafting of manuscript: YS. Interpretation of data and critical revision: All authors.

Funding YS was supported by Mag-Tarm Fonden, Karolinska Institutet Research Funding and Region Stockholm. HH was supported by grants from Stockholm City County, The Swedish Cancer Society and The Swedish Research Council.

Competing interests None declared.

Patient consent for publication Consent obtained directly from patient(s).

Ethics approval This study involves human participants and was approved by an ethical review board in Sweden (registration number: 2021-04422).

Provenance and peer review Not commissioned; externally peer reviewed.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

© Author(s) (or their employer(s)) 2024. No commercial re-use. See rights and permissions. Published by BMJ.

Additional supplemental material is published online only. To view, please visit the journal online (https://doi.org/10.1136/gutjnl-2023-331331).

To cite Shang Y, Akbari C, Dodd M, et al. Gut 2024;**73**:e30.

Received 16 October 2023 Accepted 22 January 2024 Published Online First 26 February 2024

Gut 2024;73:e30. doi:10.1136/gutjnl-2023-331331

ORCID iDs

Ying Shang http://orcid.org/0000-0002-1496-1799 Patrik Nasr http://orcid.org/0000-0002-2928-4188 Hannes Hagström http://orcid.org/0000-0002-8474-1759

REFERENCES

- Simon TG, Roelstraete B, Khalili H, et al. Mortality in biopsy-confirmed nonalcoholic fatty liver disease: results from a nationwide cohort. Gut 2021;70:1375–82.
- 2 Hagström H, Nasr P, Ekstedt M, et al. Fibrosis stage but not NASH predicts mortality and time to development of severe liver disease in biopsy-proven NAFLD. J Hepatol 2017;67:1265–73.
- 3 Ng CH, Lim WH, Hui Lim GE, et al. Mortality outcomes by fibrosis stage in nonalcoholic fatty liver disease: a systematic review and meta-analysis. Clin Gastroenterol Hepatol 2023;21:931–9.
- 4 Taylor RS, Taylor RJ, Bayliss S, et al. Association between fibrosis stage and outcomes of patients with nonalcoholic fatty liver disease: a systematic review and meta-analysis. *Gastroenterology* 2020;158:1611–25.
- 5 Akbari C, Dodd M, Stål P, et al. Long-term major adverse liver outcomes in 1,260 patients with non-cirrhotic NAFLD. JHEP Rep 2024;6:100915.

2 of 2 Gut November 2024 Vol 73 No 11